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By Fred Hapgood  
Illustration by David Plunkert 

Reverse-  
Engineering  
the Brain
At MIT, neuroscience and artificial 
intelligence are beginning to intersect.

 “M
aggie is a very smart monkey,” says Tim Buschman, 
a graduate student in Professor Earl Miller’s 
neuroscience lab. Maggie isn’t visible—she’s in 
a biosafety enclosure meant to protect her from 

human germs—but the signs of her intelligence flow over 
two monitors in front of Buschman. For the last seven years, 
Maggie has “worked” for MIT’s Department of Brain and 
Cognitive Sciences (BCS). Three hours a day, the macaque 
plays computer games that (usually) are designed to require 
her to generate abstract representations and then use those 
abstractions as tools. “Even I have trouble with this one,” 
Buschman says, nodding at a game that involves classify
ing logical operations. But Maggie is on a roll, slamming 
through problems, taking about half a second for each and 
getting about four out of five right.

Maggie’s gaming lies at the intersection of artificial intelli
gence (AI) and neuroscience. Under the tutelage of Buschman 
and Michelle Machon, another graduate student, she is con
tributing to research on how the brain learns and constructs 
logical rules, and how its performance of those tasks com
pares with that of the artificial neural networks used in AI.

Forty years ago, the idea that neuroscience and AI 
might converge in labs like Miller’s would have been all 

but unthinkable. Back then, the two disciplines operated 
at arm’s length. While neuroscience focused on uncover
ing and describing the details of neuroanatomy and neural 
activity, AI was trying to develop an independent, nonbio
logical path to intelligence. (Historically, technology hasn’t 
really needed to copy nature that slavishly; airplanes don’t 
fly like birds and cars don’t run like horses.) And it was AI 
that seemed to be advancing much more rapidly. Neuro
science knew hardly anything about what the brain was, 
let alone how it worked, whereas everyone with an ounce 
of sense believed that the day when computers would be 
able to do everything humans did (and do it better) was 
well within sight. In 1962, President Kennedy himself was 
persuaded of the point, pronouncing automation (or as it 
was often called then, “cybernation”) the core domestic 
challenge of the 1960s, because of the threat that it would 
put humans out of work.

But something derailed the AI express. Although comput
ers could be made to handle simple objects in a controlled 
setting, they failed miserably at recognizing complex objects 
in the natural world. A microphone could distinguish sound 
levels but not summarize what had been said; a manipulator 
could pick up a clean new object lying in an ordered array but 
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researchers would substitute new objects while the subjects 
were moving their eyes. For example, let’s say an object 
that looked kind of squat, with perky ears, was introduced 
at the right of the screen while the subject was focusing 
on the center. As the subject’s gaze shifted toward squat 
and perky, the researchers would replace the object with 
one that looked slightly thinner, with droopier ears. Since 
humans are effectively blind during gaze shifts, the subjects 
did not notice the swap. But their brains did.

After an hour or two of exposure to different objects, some 
of which were consistently swapped out when they appeared 
in particular positions, subjects were presented with pairs 
of the objects in different positions on the screen and asked 
to compare them. One might expect that the subjects would 
distinguish the objects without much difficulty. And so they 
did, except when the objects had been swapped—and were 
now reappearing in the same positions where the swaps 

occurred. Subjects tended to confuse those objects: that is, 
they were more likely to judge that squat and perky at one 
position and thin and droopy at another were one and the 
same object. DiCarlo thinks such errors show that the brain’s 
mechanisms for recognizing the same object in different 
places depend on normal visual experience across space and 
time. “The finding suggests that even fundamental proper
ties of object recognition may be developed through visual 
experience with our world,” he says. DiCarlo and his team 
are conducting similar experiments in animals to examine 
the patterns of neuronal activity that underlie object recog
nition. (A good example of this research was published in 
the November 4, 2005, issue of Science magazine. DiCarlo 
and three collaborators recorded and analyzed the activity of 
hundreds of neurons in macaque brains. They were able to 
show that highly reliable information about object identity 
and category was contained in even handfuls of neurons.)

Object recognition has been one of the major targets, and 
major disappointments, of traditional AI. While machine 
vision is a real industry, its successes have been in narrowly 
defined applications under highly controlled conditions, 
such as decoding license plates, identifying fingerprints, 
recognizing printed characters, and inspecting products 
(for instance, identifying burnt potato chips so they can be 
blown out of an assembly line). Each machine vision sys
tem “sees” only a specific kind of object; for example, the 
machine that reads license plates would not be able to iden

tify fingerprints, and vice versa. Although today’s technology 
might be good enough to give us machines that recognize 
any one thing, most jobs in most industries—assembly, main
tenance, health care, transportation, security—require more 
versatility than that. Workers need to be able to recognize 
a hammer and a screwdriver and a wrench, despite differ
ences in lighting, the objects’ orientation, and the surround
ing clutter. The failure to build machines that can do this is 
especially frustrating given that birds like crows, and small 
mammals like rats, routinely exhibit a level of skill in general 
recognition that is way beyond current technology. There is 
something about not being able to make machines as smart 
as we are that is consoling to our vanity; but not being able 
to make one as smart as a pigeon is just embarrassing. 

So for years AI researchers have been working on the 
problem of associating visual patterns with meanings or 
identities. This is one of the areas where AI and neuro

science have been edging toward each 
other: neuroscience has been working on 
the brain’s role in object recognition, AI on 
the general logic of what any system would 
have to do to solve the same problem. After 
decades they are almost within talking dis
tance. DiCarlo wonders if it might be time 
to christen a new discipline that draws from 

both fields, like “biologically inspired machine vision.” 
No university is approaching this intersection faster 

than MIT, where the collaboration of engineering and sci
ence is an institutional mission. And that, says DiCarlo, 
is one reason he came to MIT: he expects the revolution 
to happen here.

Modeling Immediate Recognition
A striking illustration of DiCarlo’s point can be found in 
the labs of Tomaso Poggio. The codirector of MIT’s Cen
ter for Biological and Computational Learning, Poggio has 
been working on vision for four decades, first at the Max 
Planck Institute in Tübingen, Germany, then at MIT’s AI 
lab (which became the Computer Science and Artificial 
Intelligence Lab), and now in the Department of Brain 
and Cognitive Sciences. (Poggio collaborated with DiCarlo 
in the macaque experiments described in Science.) For 
much of this time, Poggio directed one research group in 
neuroscience and one in machine vision and saw no rea
son to bring them together. “We knew so little,” he says. “I 
always thought it was a mistake to expect much from neuro
science.” But recent results from a project carried out by 
postdoc Thomas Serre and Aude Oliva, assistant professor 
of cognitive neuroscience in BCS, made him a convert.

Poggio’s lab is currently focusing on a type of object 
recognition called immediate recognition. This phenome
non was first described in 1969 in a paper by MIT lecturer 

not a dirty old one lying in a jumbled heap. (Nor could it, 
in Marvin Minsky’s inspired example, put a pillow in a pil
lowcase.) Today we worry far more about competition from 
humans overseas than about competition from machines.

While AI’s progress has been slower than expected, 
neuroscience has gotten much more sophisticated in its 
understanding of how the brain works. Nowhere is this 
more obvious than in the 37 labs of MIT’s BCS Complex. 
Groups here are charting the neural pathways of most of the 
higher cognitive functions (and their disorders), 
including learning, memory, the organization of 
complex sequential behaviors, the formation and 
storage of habits, mental imagery, number man
agement and control, goal definition and plan
ning, the processing of concepts and beliefs, and 
the ability to understand what others are think
ing. The potential impact of this research could 
be enormous. Discovering how the brain works—
exactly how it works, the way we know how a 
motor works—would rewrite almost every text in 
the library. Just for starters, it would revolutionize 
criminal justice, education, marketing, parenting, 
and the treatment of mental dysfunctions of every 
kind. (Earl Miller is hoping the research done in 
his lab will aid in the development of therapies 
for learning disorders.) 

Such progress is one reason the once bright line 
between neuroscience and AI is beginning to blur 
at MIT—and not just in Miller’s lab. Vision research 
under way at the Institute also illustrates how the 
two disciplines are beginning to collaborate. “The 
fields grew up separately,” says James DiCarlo, 
assistant professor of neuroscience, “but they’re 
not going to be separate much longer.” These 
days, AI researchers follow the advance of neuro
science with great interest, and the idea of reverse 
engineering the brain is no longer as implausible 
as it once seemed.

Understanding Object Recognition
Much of the work in DiCarlo’s lab concerns object 
recognition, which is what allows us to identify an 
object (such as a cow) in many different presen
tations (cows far away, cows viewed from above, 
cows at dawn, a cow in a truck) without mistaking 
it for similar objects (like, say, a horse). DiCarlo 
and graduate student David Cox published research 
last August in Nature Neuroscience that focused on 
one of the basic questions about object recognition: 
how much of our success in recognizing objects 
depends on hardwired, innate circuitry, and how 
much on learned skills?

DiCarlo and Cox conducted each of their experiments on 
a dozen people, one person at a time. Subjects sat in front 
of equipment that could both display images of objects and 
track the direction of the subjects’ gaze. The objects were 
computer generated and looked vaguely like anthropomor
phized animals, but they were designed to be unfamiliar to 
the subjects. An object would appear in one of three posi
tions on a screen, and the subject would naturally shift 
his or her gaze toward it. For certain objects, however, the 
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Discovering how the brain works— 
exactly how it works, the way we know 
how a motor works—would rewrite 
almost every text in the library.

James DiCarlo’s lab 
has shown that visual 
experience affects 
the ability to 
recognize objects.
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Mary Potter (now a professor of psychology at BCS) and 
her research assistant, Ellen Levy. Immediate recognition 
is the fastest known form of recognition. A subject in a 
classic immediaterecognition experiment is seated before 
a display and asked to push one of two keys in response 
to each image in a series, depending on whether it con
tains an animal or not. To make sure looking at one image 
doesn’t accidentally help subjects learn how to look at oth
ers, researchers choose images that are very different: 
many species, in many different poses and perspectives, set 
against a wide range of backgrounds. The photos come and 
go in a few tenths of a second. At the start of a study, a sub
ject might have next to no awareness of even being shown 
an image, let alone recognizing what is in it. Yet amazingly, 
people hit the right keys more often than not. They get 
steadily better—and become conscious of the appearance of 
the images—with practice. Still, at the outset, something in 
the brain is able to recognize and categorize objects before 
the subject is even aware of seeing anything.

Immediate recognition is important to researchers 
because it is the simplest possible case of general object 
recognition. It happens too quickly to involve recruiting lots 
of neurons or processing information intensively or sending 
and receiving impulses over more than a fraction of a centi
meter. Information from eye movements, a key element in 
other kinds of recognition (as in DiCarlo’s work), can play 
no role. Yet somehow the right keys get pressed (mostly), 
which means that a limited form of generalpurpose object 
recognition must be possible using a relatively small num
ber of neurons organized in a relatively simple fashion.

Building on work Poggio did with Max Riesenhuber, 
PhD ’00, then a grad student at MIT and now a professor at 
Georgetown University, Serre, Poggio, and others in Poggio’s  
group developed a theory about the part of the visual cor
tex chiefly responsible for immediate recognition. Their 
approach to visual processing was in many respects differ
ent from a machine vision engineer’s. For instance, most 
machine vision programs feature one processor executing 
a series of instructions in consecutive order, an architecture 
known as “serial processing.” The brain, on the other hand, 
uses “parallel processing,” an approach in which a problem 
is broken up into many pieces, each tackled separately by 
its own processor, after which the results are combined or 
integrated to get a single general result—say, the perception 
of a cow. In theory, engineers could use parallel processing 

for machine vision programs (and some have tried), but 
in practice it is seldom obvious how to break down a prob
lem in a way that allows the finished pieces to be seam
lessly recombined.

Biological vision solves this problem in several different 
ways. One, according to Poggio’s group, is to organize pro
cessing around two simple operations and then alternate 
these operations in an ordered way through layers of neu
rons. Layer A might filter the basic inputs from the optic 
nerve; layer B would integrate the results from many cells 
in layer A; C would filter the inputs from B; D would inte
grate the results from C; and so on, perhaps a dozen times. 
As a signal rises through the layers, the outputs of the par
allelized processors gradually combine, identity emerges, 
and noise falls away.

Serre and Poggio used this layering technique to enable 
their model to do parallel processing. Another trick they bor
rowed from biology was to increase the number of connec
tions linking their basic switching units. The switching units 

in conventional computers have very few con
nections, usually around three; neurons, the 
basic switching units of the brain, have thou
sands or even tens of thousands. Serre and Pog
gio endowed the logical switches in their model 
with a biologically plausible degree of connec
tivity. In cases where the science was not yet 

known, they made assumptions based on their broader expe
rience with neuroanatomy. 

To test their theory, Serre and Poggio developed an 
immediaterecognition computer program that analyzes 
digital images. When digital image files are fed into the 
program, it passes them through multiple alternating layers 
of filtering and integrating cells, training itself to identify 
and classify the images. “The key is building complexity 
slowly,” Serre says. “Introducing intelligence too quickly is 
a big mistake.” Early AI efforts may have tried to zero in 
on identity too quickly, throwing out information that was 
critical for getting the right answer.

Serre and Poggio’s approach was a spectacular success. 
From a neuroscientific point of view, some of their assump
tions turned out to predict real features, such as the pres
ence of cells (call them OR cells) that pick the strongest or 
most consistent signal out of a group of inputs and copy it 
to their own output fibers. (Imagine a group of three neu
rons, A, B, and C, all sending signals to OR neuron X. If 
those signals were at strength levels 1, 2, and 3 respectively, 
X would suppress A and B and copy C’s signal to its output. 
If the strengths had been 3, 2, and 1, it would instead have 
copied A’s signal and suppressed those of B and C.)

The results were just as dramatic from an AI point of view. 
When human subjects and Serre and Poggio’s immediate
recognition program took the animal presence/absence test, 

the computer did as well as the humans—and better than the 
best machine vision programs available. (Indeed, it got the 
right answer 82 percent of the time, while the humans aver
aged just 80 percent.) This is almost certainly the first time a 
generalvision program has performed as well as humans.

The promising results have Poggio and Serre think
ing beyond immediate recognition. Poggio suspects that 
the model might apply just as well to auditory perception. 
Serre advances an even more daring speculation: that gen
eral object recognition is the basic building block of cogni
tion. Perhaps that’s why we say “I see” when we want to 
indicate that we understand something.

Although extending their theory in these new direc
tions will take some work, Serre and Poggio’s model has 
already begun to spread through both the AI and neuro
science communities at MIT. Electricalengineering gradu
ate student Stan Bileschi recently finished a doctorate that 
applied the model to scene recognition, which is the deri
vation of higherorder judgments—“it’s a farm!”—from the 
recognition of separate objects—a barn, a cow, a splitrail 
fence. Bileschi believes that general scene analysis will be 
critical to many realworld machine vision applications—
surveillance, for instance. 

Immediate recognition is the foundation of overall visual 
recognition, says Poggio, but it’s not all there is to it. There 
are many levels of recognition, and immediate recognition 
is one of the simplest. Depending on the context, an object 
might be identified as a toy, a doll, a Barbie, a reflection 
of American culture, a female, a representation of a girl 
with a weird growth disorder, and so on, down a long list. 
Similarly, in chess problems, recognizing the right move 
can take seconds or minutes or hours, depending on the 
configuration of the pieces. Presumably, as problems get 
harder, solving them requires recruiting higher levels of 
brain function—and that takes time.

An immediaterecognition model might solve the vision 
problems that have impeded the development of useful 
maintenance and construction robots. Or we might find 
that to be really useful, such robots need to be able to rec
ognize both anomalies in the landscape and their causes. 
That type of recognition is clearly of a higher order.

The next step is to build recognition models that recruit 
more and more resources, and thus require more process
ing time. “We know how the model could be changed to 
include time,” says Serre. “This might bring us closer to 
thinking—just maybe.” k
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“We knew so little. I always thought it 
was a mistake to expect much from 
neuroscience.” —Tomaso Poggio A biologically inspired computer 

program from Tomaso Poggio’s lab 
performed as well as humans on a 
simple image recognition test. 


